PROCEEDINGぶ

WF THE

UNITED STATES NATIONAL MUSEUM

FOL 'NHE YEAIR 1893.

Volume XVI.

INTRODUCTION TO A MONOGRAPH OF THE NORTH AMERICAN BATS.*

BY

Harrison Allen, M. D.
The bats constitute the order Cheiroptera. Unlike related groups which are equally extensive, the bats do not vary in sufficient degree to be confounded by any possibility with other creatures. By an untrained observer shrews might be mistaken for mice or voles, some of the smaller marsupials for minks or weasels, conies for marmots. But the popular impression of a bat is accurate, since this creature is the only mammal adapted for true flight, and no other mammal resembles it. If any mammals exist or have existed that are half bats and halt moles, half bats and half lemurs, half bats and half marmots, they are quite unknown to the naturalist. Paleontology is silent as to the origin of the bats, though comparison of their bouy framework with those of the Insectivora, Lemuroidea, and Rodentia suggest that they may have arisen from the mammalian stem not far from the points at which the differentiation of these branches began.

MEMBRANES.

Let us examine the undissected bat, and endeavor to establish thereby general conceptions of the creature and of some of the signs of the superficies by which its varieties can be named. It is at once seen that the anterior extremities are furnished with greatly elongated fingers, the intervals between which are oceupied by two layers of skin. Goldsmith uses a happy phrase when he says "the fingers serve like masts that keep the canvas of a sail spread and regnlate its motions."

[^0]Layers of skin thms make upthe wing membane. They are contimons from the last, finger and the thmm, or some adjacent sulatere to the sides of the body, the meek (bull above and below the allon alld foreatm), athl the outer side of the posterior extremity. liakl wing membrane reatbes below the kene and from this point, in varybeg degrees, to the amkle ame the foot. The spate hetween the posterior extromities is also orempiod, as atule, by two arjoined layers of interument which constifules the interfemmal membrame. This structure as apposed to the above is less eonstant in form and dimensions. It may be wided by a long tail quite to its tip, it maly allow tho lip to project in ditherent degrees beyoud its tree marein, it may greatly exceed in si\%e that of the sfonted tail, it may be defined as a hem abome the inmer border of the limbs, or it may be entirely absent.

16 follows from these statemembs that all bats are provided with a bate and a liont skin-0xpanse from thesides of the body to the extremiities in a comstant manmer, but fom the tail to the posterior extremities in an inconstant mamer, the last mamed presenting moditieations determined by degrees of onterowth al the tatil itself.

The membentes present mathy details with respect to the manner of their aftachment to the sides of the body and to the varions parts of the limbs. Interesting ratiations of plan are seren where the skin rrosses joints. In the elbow joint the skin may be attared entirely to the eppeomble, so that the joint lies quite to the mader side of the wing, as in the Jfibeth fox-bat, Epomophorus; or it may be attached midway, mamely, fo the olerramoit, as in many forms, but perhaps best seen in the meotropical Ameridall Stecoplerya: or it may be attached entimery to the epitrochlea, so that the joint lies quito on the npere surfine of the wing, as in Thhmolophus peetromi and Tophozoms. At the wrist distinctions are seen in the manmer in which the tendons of the
 Which is formed between the ratios athe the fifth metaciapal bone When this angle is matked, and skin folds are eomspienoms orer the tendons mamed, aradio-metarapal pouch is defined. The kince always lies on the upper surface of the membrane. It is most free in Macrotus and least so in the Atolossi.* The membane attanhed to the amkle maty lic entirely to the pollieal side of the joint, but is disposed to cross it by an ohligue raised fold and be seemed to the minimal, i. e., little toe side.

I hate fomm it compenient to employ a momber of names for the sulbdivisions of the dermal expanse.

The membitue which extends from the sides of the tronk to inchule the anterior extremity is the wing membrane ("bat wing, patagimm).

The membrano between the legs is the intertemoral membrame (mor patagiome.

[^1]The wing membrane above the arm and forearm is the prehachimu (antebrachial membrane, propataginm).
The wing membrane below the arm and foreanm would become antithetically the postbrachimin. Sat since the postbrachinm could not be separated from the sides of the trunk and the legs, it has been foum necessary to discard it.

The part of the wing membrane lying between the borly, the humerus, the lower extremity, and a hyothetical line drawn downward from the elbow and intersecting the free margin of the membrane, is the endopatagimm.
The bonndary at the elbow is often fixed by the vertical terminal branch of the intereosto-hnmeral line. The subordinate lines (probably platysmal in origin) in the emblopatagimen incline obliquely either toward the humerns or the trunk.
The part of the wing membrane which is limited hy the line at the elbow as above given, by the forearm, and the fifth metacarpal bone and phalanges, is the mesopatagium.* Within the mesopatagium the subordinate lines ineline either toward the forearm or the manns.
The part of the wing membrane limited to the manns becomes the (retopatagimm (dactylo-patagimm). The subdivisions of the ectopatagium are the first, second, third, and fourth interspaces. These are named from the pollex toward the quintus. The series of bones which is embraced in the metacarpal and phalangeal lines being comspicnons in the bat, it is desirable to possess a name in referring to each series taken as a whole. The name digit will be used fon the rod of segments embracing the metacarpal element. The nerve which appears at the anterior margin of a digit beromes predigital, and that of the posterior margin, postrigital.

The eartilaginous $\mathrm{tip}_{\mathrm{p}}$, to the terminal bony phatan, respectively, of the third, fourth, and fifth fingers will receive the name of the third phalanx when three phalanges are present, and of the fourth phatanx when four phalanges are present. The shapes of the terminal phat langes are of interest and some of these will be deseribed.

I have examined a sufficient number of genera to suggest that an account of the markings of the wing membrames and of the shapes of the terminal phalanges enter into all discriminating studies.

The division of the wing membrane into the parts endopatagium, mesopatagrm and ectöpatagim is sustained by what is observed in Taphozous muuritiunus, since in this species the endopatagium is of a dark color while the rest of the membrane is white, excepting the extreme tip of the end of the third finger. Now when the animal is at rest the surfaces above named are those only whieh are exposed to the light. In all young bats which cling to the mother, without exposing any other portions of the membrane than those named, it is evident that for a

[^2]long period the cmdopatagimu has finctions whith are not exacted of the rest of the wing membrane, and in consergence, in my judgment, it is casy to see how this portion of the wing expanse should be distinguished from those portions which are nsed only in tlight.
The digits on their palmar aspeet may be sharply detined as in the Phyllostomide and Corynorhinus, or they may be obsenred by the membrame or the upper part in the forepart of the hand, namely, in the region of the second, third, and fourth digits, as in Molossi, Vespertilionide and the genus Antrozous. The membane may lie chietly on the mpper aspect of the digits, as in most bats, or at the lower. That in the second interspace may be attached to the upper border of the seeond and to the lower border of the thind metacarpal bone.

The skin is muth more loose about the legs than the arms and on the interfemoral membrane than the wing membrane. The membranes are attached to the lower border of the first two or three caudal vertebree, thus permitting them to be seen distinctly abore, and to the upper borders of the remaining vertebree, thins permitting them to be seen more distinctly belor.
The skin of the two sides of the body mite in such wise as to permit a very narrow interval to exist between the two layers. The npper layer of the wing membrane is extending directly outward on a level with the baek of the chest and of the loin, but the lower layer is variable. It may extend outward as in the mper layer, but a disposition exists for it first to conform to the curve of the side of the trimk and join the upper layer near the mion of the side with the upper surface of the trumk. In one remarkable instance, Chilonycteris daryi, the under layer extends quite to the middle line of the back, and thence is deflected in an arute angle outward to join the upper layer. The region of the axilla is greatly depressed in bats, owing to the inclination for the under skin layer to extend upward and backward. This space is so large as to suggest the adaptation of the pouch thas formed for the protection of the young. In Cheiromeles it must have another signiticance, since it here constitutes a huge bag-like involution which extends as firr as the middle line of the back.

TIIE WING MEDBRANE AT REST?.

The bat when at rest folds the tingers by a movement of the root of the hand (carpus) downward on the wrist end (distal end) of the forearm. This movement is characteristic and when eompleted brings the fingers in a compact bundle (like the ribs of a closed umbrella) under the forearm and parallel to it. The hand is thus tucked up toward the rest of the anterior extremity, and as the forearm (in the same morement) is sharply tlexed on the arm the entire extremity presents the greatest possible contrast to what it exhibited when prepared for tlight. The bat now supports the body in one of two ways. It is prone, i. e., with the front of the body downward on the plane of support. or it is pendant, i. e, hung by the claws of the hind fect. If it is prone the base of
the thamb and wrist supports the borly and is furnished with a hardened pad of skin (callosity) for the purpose, the thumb being held at the same time well out of the way, and the posterior extremity taking the position nearly the same as that of terrestrial quadrupeds. The best example of those that seurry* when the wings are folded are the Molossi. In this group the phalanges of the third and fourth digits are now no longer held in axial line with the metacarpals as in flight, but are drawn upward and to the side, thongh well out of the way. The tail in all prone forms remains extended and the tip touches the plane on which the animal rests. If the bat is pendant in rest the base of the thumb and wrist do not support. The thumb is without callosity, is more engaged in the wing membrane, and is drawn more or less in toward the under surface of the wing. In this event the foot is furnished with sharper and more recurved claws, since they are now prehensile. The leg assumes a position quite at variance with the terrestrial position and is different in this regard from all mammals, the sloth alone excepted. The tail in the pendant form, at least in our red bat, is drawn well forward and rests on the lower part of the trunk. It is readily seen that very long digits of the anterior extremity would be more or less in the way in the prone forms, while they might be extended to any degree in the pendant forms, without interference. In fact the first named have smaller digital elements than the last and the wing expanse is correspondingly more restricted. \dagger

THE WING MEMBRANE IN FLIGHT.

While interesting characters are thus observed in the bat when at rest it is in the use of the limbs in flight that the chief peculiarities are noted. The intervals between the digits vary greatly in the different genera. As already remarked the under surfaces of the second and third digits are boldly outlined or are covered with membrane so as to obscure their ontlines. In the forms in which this obseuring is noticed the fifth finger is supported by a little rod of eartilage.

The opening of the wing exerts a powerful influence over the posterior extremity. It pulls it outward in the forms in which an interfemoral membrane is present and thus makes tense this membrane. The entire limb is abducted from the terrestrial position and the foot is turned with its plantar surface forward.

[^3]The wing membrame may he said to he redumbant when the expanse abowe the arm and foream extemde ferely to the earpos and embanes the small thmmb to a point beyond the tirst phatans of the thmmb; when it extend down to the foot heyond an oblisue musele line which extends upward and outward from the lower part of the leg: when the space between the second and third digits is ample, and that between the thmmb amd second digit is provided with a well-detined hem of membrame.

Skin folds are often disposed along the lines represented by the palman taseia, at the proximal end ot the fith digit.* The tlexor tendons at the radio digital angle are often covered with similar dispositions of the skin.
The membranes are supported not only hey the parts of the skelatal frame-work, as these parts are usmally defted, but by a momber of special adaptations. An aceessory cartilage at the somad margin of the terminal fifth digit has been already named (Molossi and Vespertilionidar, exept llecoti). The interfemoral membrame is supported at the free margin by a suecial cartilage (calear) from the tarsus in all bats excepting the Pteropi, Rhinolophidid, and the stemodermidar. The calear may have a process from its moder margin, as in Noctulinia noctula. The terminal joint of the tail may he spatulate, as in Nycteris. Terminal cartilages of the third and fourth digits are present except in Ptero. pider. Rhinotophider, and Emballomutide. 'They are of varying shapes, the whole arragement having for its object the support of the free margin of the wing membrame. These cartilages, as a rule, are deflected out ward, thongh they may remain axial, as in Phylhostomida amd Pleenti.

All things remaining the same, the degree of strain may be measured by the extent and variety of these special supports, and may be said to be in the line of specialization for aerial movements. Hence, in forms in whel they are absent the membrames are broad and may be said to oxhibit more of a parachute armagement than in other types in which they are present, and the motion of the wings to be like that of a slow faming vather than a rapiol, varied tight.
Stain on the membranes is also shown in the angle form between the portions of the wing farthest away from the body, namely, the region of the second amd third digits. These are pulled away from the fourth and fifth digits, which remain nearly passive ly the traction of the maseles which extend these bones (extensomes canpi radiales longior et berevor), and the whole membrane beeomes tense. The contrast between the shapes of the wing in this regard is eonsiderable when such forms as Artibeus. Ayget thomus, and Italuphare compared.

When the wing of a bat is leded up between the eye of the observer and a bright light the membrane is seen to be translucent. The delicate comertive tissue lines (trabecule) are seen miting the varions

[^4]parts of the bony framework, and the positions of the nerves, bood ressels, and musele-fascicles are displayed. The paths of the nerves and blood vessels constitute one system and may be spoken of together, but the tracenle and museles are distinet from these and in some degree from each other. As in the case of the relation which exists between the skin and the bones, so in the arrangement of the parts just named the degrees of strain to which the wing is sulpjected achount in the main for the difference in the various genera. The musele-faseicles are most numerons in the membrane near the body, and are better ileveloped in the narrow-pointed winged forms, such as Molossi and Atulaphe, than in the broad, parachute-like forms. The mosele element in the wing is especially weak in the Pteropide, Rhinolophide, and V'espertilionide.

The fibrous lines which extend across the membranes are not without system. Many of them are excessively attemated tendons; such, for example, are the fibres of the palmar fascia, already mentioned. Others are the fibres which comnect the joints of digits; more of them yet appear to be parts of a true derm. The nerves and blood vessels pursue the same courses. Since the directions of nerves are of more importance in morphologieal study than the vessels, the former will be alone named. In each interdigital space a nerve teuds to enter at its proximal end and, dividing into two branches, incline along the sides of the opposed metacarpal bones. The departures from this plan are mmerous, and are so constant in groups of generic and even specific limitation that they constitute a valuable addition to diagnoses.

The wing membrane, when expanded, exhibits differences in the width of the interdigital spaces. These differences relate in an intimate manner with the behavior of the parts in tlight, and consequently with habit. The subjoined table indicates some of these distinetions:

Mamal (pteral) formula of the widths of second, third, and fourth interspucts.

	Specties.	II.	1 II.	1 V .	Forearm.	mifference between 111 and IV.
Lophostoma		${ }^{\prime \prime} m_{7}$	mm_{17}	mm.	${ }^{2 \prime m} m_{4}$	$\ldots m$.
Schizostomil.		3	16	$\because 1$	32	
Macrotus..		$\stackrel{3}{2}$	15	$\because 2$	4	7
Desmodus.		2	$\because 1$	3	53	10
Vampyrops		3	17	97	36	10
Chilonyeteris.		$1 \frac{1}{3}$	15	17	40	12
11 miderma ...		- 5	20	39	\bigcirc	9-12
Vampyrus..		16	41	53	105	12
lonchoglossa.		3	19	32	33	12
Monophylus..		3	17	34	32	14
Artibens		4	$\because 1$	39	51	18
Mrachyphyila		3	25	43	64	18
Mormops.....		3	16	35	50	19
Phyllostoma.		4	29	60	81	45
Rliynchonscte		5	10	$\stackrel{9}{9}$	40	
Cynopterus *.		10	18	97	58	
Vespertilio t.		2	11	31	59	
Epomophorus		13	$\bigcirc 1$	39 30		11
Rhinoproma ...			13	30	64 46	30
Molossins § Noctilio...		$2^{\frac{1}{2}}$	13	35	46 83	45
1 'teropusil		18	17	6,9	145	52

[^5]${ }_{i}$ E. franqueti.
|| l'. edwaddsii.

This list is selected in the matin for comparisom in members of a single family, viz, the Phyllostomidir. The last cight forms are from families other than the one lirst named.

It is believer that these distinctions may be comseniently included in the charateristie propertions of bats.

In tight the thmmb is extended in Vespertilionidir, but partially flexed in Phyllostomidar (exeppting Desmodus and Diphylla) and in Plecoti. The degree at indosme of the thamb in the membeane answers to the amplitude of the membranes generally and when extensive tends to thaw the thmmb slightly toward the palm, the space between the thumb and index tinger being moderately ocempied by a skin expansion.

It is a tendency moler rertain conditions for all growth processes to dominate fumbtions other than those which are essential to their own activities. 'The best general conception of the mamer of extembing a fold of skin between the limbs is seen in the Batrachia. In the water newts a longitudinal ridge is often seen extending along the sides of the trunk. This is contimous along the hinder border of the anterior extremity (well developed in Menopomat) and reanhes as far as the tip of the fifth digit. This fold is suppled by the ulnar nerre, which appears to be in its carliest expression a newe for the skin of the posterion border of the forearm, of the fifth digit, and the museles fonnd in these regions. The phenomena of a tohd of skin extending between the thes is one already familiar, so that the general plan of the skin expanse in a ereature so low as the Menopoma prefigures that of so highly sperialized a form as the bat without violence and without leaving a single lime obsemed. Difference of degrer and not of kind separates them.
The very exceptional disposition in the bat for the skin from the tronk to exteme the entire lengths of the limb, and in the case of the anterion extremity to form emomons webs between the produced dig. its, is associated with an inclination tor the cars to berome greatly expanded and for cutancons offshoots to appear at the mazzle, chin, and the sides of the fire. Even the prepure is disposed to be redmadant. Together with this inelination, dermal strmetures are highly sperialized, so that the sebareons glamel, hair follicles, and tactile bodies are well developed. It ean be readily surmised that special adaptations for a rariety of purgoses oceur in this group of structures, so that secondary sexual ehatarters ate fomed in the gland masses of the skin of the neek, and of the skin folds, the details in the oars, the ponehes of skin, ete., are available tore purposes of classification.
'TUE WNTERNAL EAK.
In this comertion let us whate at the peomianities of the external ear. The external ear is markedly modition from the type nsmal in qualrupeds. Its simplest expression is seen in the Pteropidar and the Rhimobohidid. La these familes the widely separated amientar carti-
lages are elosely enwappee by integment and the tragns is absent. In such an ear the terms inner and outer borders and tip, exhanst the list which are demanded in their deseription. In the cans of the re. maining families it is tan ditferent. The antiche here is expanded to degrees which bring the outer parts to a greater or less degree downwadd and forward on the upper parts of the neek and reach the region of the month, or even the chin, while the imer border, being gnarded by a skin fold which commets the ear to the mown, is disposed to be united with the corresponding part of the ear of the opposite side and extend in varying degrees toward the smont. Skin lap pets arise from both imer and onter borders. Those from the inner border from a long appendage which lies in advance as defined in the simple ear and becomes the internal hem. As a rule it ends as a tree lobe inferiorly, which thas becomes the internal basal lobe. The line of the trine internal border being always discernible beromes the internal ridge. The external border, which is distinguished from the true external horder which now becomes the extermal ridge is also disposed to form a hem (external hem), which, however, in contrast to the inner is apt to be divided into an nper and a lower part; the upper part forms the first seallop, and the lower the secmal seallop. The free lower end of the outer border becomes the extermal basal bobe, which may be separated from the lower seallop by a deep basal noteh, or the seeomb saalop may extend arross this noteln and the external basal lohe and beromes contimous at various distances with the face or that over the lower jaw. These parts will not receive distinctive names. In most examples the auricle is also conveniently divided into an anterior and a posterior part, the anterior part is marked, if marked at all, by lines repeating that of the internal border, while the posterior part is marked, if marked at all, by conspicnons transerse lines or stria? The hair when it extends mpward on the ear from the crown is usially of the color and character of that of the crown, white that of the posterior is of the color ami character of that of the neek.

The tragus varies exceedingly in form. The following terms are employed in its description, viz, the inner and outer border, the tip, the notch, which is near the base of the outer horder, and the busal lobe, which lies helow the notel. The tragns is said to be absent in P'teropidar and lhhnolophinle, but in some examples of the fanily last named a rudimental tragus can be discemed. The tragns always arises from the ridge which lies in front of the anditory meatus and comnects the inner and outer amricular borders. It is of interest to observe that while this comection with the borders is imperfectly defined in most bats that in the recently discovered buderme it is markedly so united and tends to constrict the basal parts of the enomons anricle.
Not only is this the case, but the ears are often unted by a band (inter aurieuker mombrane) which extends obliquely forward. In Corynorhimus and Jacrotus it is on the face, and in Promops perotis reaches quite to the snowt.

In ilhatration of the ralue of the can in clasification the following tathe is drawn up fiom the members of the hats deseribed in this memoir.

I'hyltostomidte- External ear withont internal hasal lohe. External ridge rudmental or absent. External basal lobe not margimal, but lies well within the large seemed seallop, which is contimed well in front; tragus promert, coarsely wrmulate on spinse on outer border.

Molossi.-bars without internal basal lobe. Internal ridge prombed forming a "keel." Extermal ridge marginal, produed, bommeng extermal hasal lobe. Extermal hasal noteh open, i. c.. not covered by hower seallop; tragus mumental.

Tespertilionide. Wars with internal basal lobe. Internal and extermal ridges rudimental, mot problued. External basal lobe marginal (exerpt l'lecoti), bint tombhing extemal basal ridge. Extermal basal moth ordubed by produced bower seallop. Tragus obsenrely ermulate on outer bordery or smonth.

NB"oNDARY KKIN DEVELORMENTS.

At the mazale the skin folds are median and lateral. The margins of the mostrils expand abore and at the onter side while they are separated by a groove or a ridge in the middle line, as is seem in Brachy. phylle and Nyefinomus. Or the two lines of perinarial cxpansion may meet below in the space between the nostrils and the lip to form a swollen ridge as in Glossophate or a lappet as in most lampypi, while the intermatial ridge is comtimons with a vertieal leaflet. This is the typer seen in most of the lhyllostomide as exemplified in this memoir in Artilenes and Jlacrotus. The mostrils may remain simple with mper border adraned upon lumen of the opening so as to divide it into two cornua as in most Vespertilionidar or the lumen may be wal as in Euderma

The lower lip is firmly held to the grm on the lower ineisor teeth, as in Vespertilo, or it is free and forms a protrusile. membanoms fold as in . daldipher. It may he entire or divided in the eenter so ats to form two chin plates as in J/ucrotus and as a variation in Tycticepns. In Atulaphat a distinet lappet extemds entirely across the chin and in degrees of development distingmishes the sexes. The chin itself and the space direetly back of it is adorned with seattered warts in all forms, but in Phyllostomider, as shown in . Atibers, the entire chin is conspichously admed with verrued arranged in median and lateral groups. In Chitonyeteris :and Alomoms these are the sites of combinsly complex la:atlets.

The sides of the face are fimished with skin fulds of varions lemgthe, Which are contimus with the external border of the amime, or a large wart lies divectly back of or below the angle of the month, while the siles of the muz\%le are apt to be more or less thickemed ly swollen glamd-masser, which temd to embrace the side of the mose-leaf as in

Artibeus and Dacrotus, or aseend toward the vertex of the fare, where they either apmoach earh other on the top of the mazale as in Autiozous, or end free as in Corynorhinus.

ILAIR.

The hair of the body is arranged in regions having well-defined bomndaries. The crown of the head, the region directly in front of the ear, the neck, especially the side and back, inchusive of a line across the top of the chest, the shoulder itself, the sides of the under surface of the body, the rmmp, and pubis are all regions which are often separately colored, or elothed with hair of distinct texture, or rate of development than that of the other portions of the body. The sides of the neck are always furnished with longer hair than is the front and ordinarily than is the back. The hair of the pubis is more woolly than that seen elsewhere. The hair extends farther on the dorsmon of the face in Vespertilio than in most genera. The same region is naked in Aldoloyeteris. The shoulders are oceasionally furnished with shades of color contrasting with that of the rest of the body.

The membranes are clothed with hair in varying degrees. The greater area is maked. The interfemoral membrane is more thickly clothed on the uper than the lower surface, a tendency reaching its maximm in Atalapha, while the lower surface of the wing membrane between the body and the border of the manus-a tendency also marked in A taluphe, but most marked in the Asiatic form of the noctule bat (Noctulime noctula lasiopterus). As a rule the fur from the under surface of the body extends from the mper third or half of the arm to the knee. The presence of a clump of hair on the dorsm of the forearm is a good peripheral character for Atalaphe cinerea. The interfemoral membrane as a rule is covered with an extension of hair from the rump to the basal third in most Vespertilionide. In Tespertilio an interesting character is noted in this clump, not being well defined, bnt straggles downward in an irregular mamer and is lost near the ankle. This disposition is especially developed in Tespertilio capaceini and in the Nevadan variety of Vespertilio nitidus ciliolabrum. The lower border of the membrane is constantly fringed in some forms of Vespertilio, but as an individual variation in the North American species. It is rare to have the lower border of the wing membrane from the foot to the manus fringed as in Pteropus, but Tespertilio, as seen in North America exhibits a singularly constant, minute bristle which overlies the membrane at the tip of the fifth finger. The cars are apt to be sparsely haired on the imer surface near the anterior border, on the onter surface at the basal third or half, and on the external basal lobe. On the whole the bats which take the prone position in rest are less heavily furred than those which are pendent. In one of the most marked forms of the former gronp (Cheiromeles) the skin is nearly naked. Interesting contrasts can be made in this way between the hannters of
caves, attics, and ohd tree trmbs and those which are manght hanging from the smaller brame bes amd twigs of trees and hoshes.

Bristles (setier) usially surmoment warts (verrucar). They are best developerd on the face of Molossi, thongh they may be fomat in the gromp last named on the upper surface of the interfemoral mombane. The very long hairs of the sides of the muzzle, which are so fomspicnous in many of the small mammals of other orders, notably the Rodentia and Carnivora are absent. The best examples are met with in Vespertilio and Chocronycteris. Fringes of bristles adorn the margins of the toes in Molossi.

In describing bats in this manner the attention which has been given to the details of the coloring and the markings on membranes require an exact use of terms.

When lair arises from the membrane it will he seen that the clumps follow the directions of the trabecule and are detected in the trans. lucent wing as minute black dots arranged in rows. These must not be confounded with pigment spots which dot the naked spaces of the wing in some species.

GLANDS.

The skin glands are best developed on the sides of the face directly back of the muzzle. In Molossi a large, median, coarse sebaceons gland lies on the under surface of the neek. It is best developed in the male. The mammate are large during the lactating period when the nipples are projecting and the areolar space naked. At other times the nipple disappears and the gland is reduced to the smallest possible proportions. In Succopteryx and its allies the wing membrane above the anterior extremity is furnished with a sack which is lined with folds which yield a fetid secretion. The position and size of this sack furnish excellent characters to distinguish genera as well an sexes of individuals.

COLORATION.

It is necessary to state that the colors for the most part are deseribed from aloholie specimens which have been removed from the spirit and permitted to dry. Mr. F. W. True writes in the smithsonian Report for 1888 that alcohol disturbs the color seleme of a mammal. The chatacter of alcohol is not especially here named and the remark is undonbtedly conred for specimens which have been preserved in wood spirit. However, none of the specimens used for study have been preserved in other than commercial alcohol which has been varionsly dihuted with water. I have observed no differences of the kind named between the few living individuals I have seen, the fir of the dried skin prepared in the nstal way with arsenie and in skins dried after prolonged immersion in commercial spirit. It must also be remembered that since all the material available for my study has been preserved
in the same medium the eomparisons are sufticiently exact for puposes of identification of museum alcoholics. It is barely possible that the color description may require some monlification as contrasted with these drawn up from living specimens.

SKELETON.

Skull.-In describing the skull in bats, I have borne in mind that the form of the brain gives expression to the shape of the brain-ease to a far greater degree than is the case in other mammals. The divisions of the brain are readily outlined externally, and yield convenient boundaries, since the shapes of associated parts harmonize in some degree to them. Thus the region of the proëncephalon, of the mesencephalon, and of the metencephalon are defined. In like manner the impressions made by the lines of attachment of the temporal and masseter muscles, the former on the cranium, the latter on the lower jaw, are valuable. For the temporal muscles I have named the median line betweea the two the sagittal crest or line, and the anterior and posterior temporal impressions the anterior and posterior temporal ridges or lines.

On the under surface of the skull the size and direction of the process (sphenoidal tongue) which extends backward and outward from the basisphenoid is worthy of notice. As compared to other mammals, the cochlea is unusually large at the base of the skull, and is, as a rule, but partially concealed by the tympanic bone.
The otic capsule varies in the degree in which bony lamine occupy the spaces created by the semicircular canals. On the side of the skull the surface (opisthotic) which adjoins the squama in mammals generally is in bats crossed loy a process of the squama uniting with one from the exoccipital, as in Atalaphe, or the surface is free as in Nyctinomus. The old-world genus Hipposideros resembles Nyctinomus in this particular. When the otic capsule falls out, as it is apt to do in the overmacerated skull, a foramen or a notch is always defined between the squama and the occipital hone. Sometimes a foramen of the same significance, viz, one occupied by the opisthotic during life, is seen on the oeciput.
The otic capsule in Pteropidie alone is inclosed in bone, to form a triangular wedge comparable to the os petrosa of other mammals. As a rule, the form of the cochlea and semicircular canals are outlined as though in the human skull the encapsuling petrosal bone had been chiseled away, the degrees in which thin plates of bone fill in the semicircular canals being alone subject to change. The horizontal loop in all forms examined is filled with bone.

The following scheme of the otic element will be found usefnl: External loop entirely occupied with bone:

[^6]Extemal loop atmost entirely werpied with home:

> Antrozens. İspertilio. Idelomycteris (A. fiuscrus).

Extermal loop and superime loops not onerpied with hone:

> Noctilio.
> Marvolus (wecansionally rxcepted). Hemiderma. Chilonycteris.

The tympanic bone is sometimes incomplete, as in lespertilio, at its upher are, where it limits the zonat tympaniea superiorly. The bone eonstitutes the bulla, which presents vanoms degrees of extension over the eochlea or forward along the side of the glenoid fossa. The width of the origin of the sterno-mastoid muscle is murh greater than in mammalia genstally: This interval in Lrtibens equals one-seventh of the groatest length of the skull, whieh in Canis it equals one-nineteenth.
seen from above, the face is deseribed as forming a rertex. This extends from the region ot the proemephaton to the mpper border of the anterior nasal aperture. On the side the region of the face is egnal to the length of the dental series. The orbit is, strictly speaking, tait portion of the skull whieh aeeommodates the eyeball; but this is mueh smaller than the space as defined by the bony limits, as seen in many othermammals. Since custom has sametioned an acepetanco of an orbital region which womld be limited posteriorly if a proeess were present extemeling from the anterior temporal ridge towatd the zygoma, a similad region so restricted is held to be a valid one in all bats. In some gemera, indeed, as those of the limballommidar, the post-orbital proce ess is constantly present, and in the l'teropidel varying degrees of posterion limitations of the orbital begion ate seen. The fare, including a part of the frontal bone, is intated at the side in hats. I have called this the fronto-maxillary intation. It forms a ridge or swelling at the upper border of the orbit. The inflation of the skill at the anterion part of the formal bome to form the fontal sims is much less eomspeuous in the Cheiropterat than in some other moles, but the masillary intlation is greater. 'This perentiarity gives the face aboad effect at its jumetion with the batin- "ase and morlites the shape of the orbit. The ethmoidal phates varionsly ehamge the shape of the immer wall. As a rule, the fiontal bome here permits the eetotmbinal parts to be in part detined. The region of the latelamal bone appears to resist the disposition to intlation: hence the pernlianties of the inflation give ehar. arter to this portion of the cramim. Ont the vertex the inthation canses the fare to widen from the promorephalon to near the anterion masal aperture, where it is abmptly marowed, amd to create depressions of inconstant kinds in the lime of the conjoined masial bones. The extent to Which the reeession of the hasal home fiom the anterior masal aperture ocemes, as well as of the palatal noteh, due ter the rudimentary state of
the premaxilla, afford bases for some characters of minor value. The length of the intra-orbital canal and the peculanities of the onter wall of the canal are of interest. In Artibens the canal is long and for the most part smooth externally, as in Comis, while in the fana generally it is short, as in Felis, and is often elovated.
The hard palate may be cither in the main axis of the skull, as in most forms, or deflected mpad and forward. The chameters furnished by the pterygoid processes, the palatal plates, are here as useful as in other mammalian groups. The premaxille are rarely firmly united to one another. When they are so united, as in Phyllostomide and Molossi, the median incisors are disposed to be contignons. When they are not mited, a large median interspace separates them and is continuons with the vacnity which in other mammals represent the incisorial foramen. The presence or absence of the spheno-palatine foramen is used in some groups, as Molossi and in Plecoti, in separating genera. The disposition of the turbinals is also of interest, the peculiarities of the arrangement being definitive of the families as established on other structural chanacters. If in mammals generally an outer and an inner turbinal group is recognized, then in the bats we have a median lamina which bears upon its imer surface one or more serolls (endoturbinals), and an onter laminat with much simpler accessories (ectoturbinals). The simplest arramgement of the turbinals is seen in the Nyeteride and Rhinolophider, the most complex in Pteropidar. In Nutulus alone is the ectoturbinal rudimental or absent. (Bull. Mus. Comp. Zool., Felo, 1880.)

In aldition to the peculiarities of the masseteric impression on the lower jaw, already noticed, characters are furnished in the height of the coronoid process and the degree of deflection as well as the size and shape of the angle. The post-symphysal spine which is conspicuons in some extinct forms has not been seen by me in any of the extant forms, and I have examined most of the genera of the order.
The shortening of the fice, pari passu, with reduction of teeth, is seen in Carnivora. The tendency is seen in Vesperngo, and in bats generally. In Vespertilio the shortening of face is accompanied by displacement inwarl of the premolars. In a mechanical sense it amounts to the same as reduction in number. In pteropine bats a remarkable persistence of facial length remains, while the disposition to reduction is evident. One may conclude from the instance last named that the shortening of face and reduction of teeth are independent. The same is tine of the Ungulata.

In Atuluphut the lower jaw closes in front of the upper. The lower canines articulate with the anterior surfaces of the upper laterals their entire length. The upper canines are free, i. e., do not articulate with anything.

Vertebral column.-The vertebral colnm is withont large processes other than the hemopophyses which are well developed ia the cervical region.

16

The atlas is broadest in Pteropidid. In both Ptroropus and E'pomophorms the lome extemds downward posterionly amd at the sides so as to conceal the lower opening of the ranal for the vertebmal canal. The "pper border of the conjoined lamina is boldly rugose. In Artibens, a member of a gromp in the New World amalogons to the foregoing, the atlas is gratly realuced in the proportions of the lamina and the tramsverse process, the lower opening of the canal for the vertehral eamal is exposed on the posterior aspect of the bone, while the upper border of thee eonjoined laminar is seareely rugose. In the vespertilionines, molossines, and ploylostomines minor perulianities distinguish the atlas. These are given in the diagosis of genera and speeies. In a general Way it may be said that the pteropines are broadly separated foom all the other bats by the characters prosented by this bone. In Peropus. aud Epomophorus the axis possesses a large nemral spine which abmost equals the length of the body inclasive of the eylindroid odontoid process. In Artibens the spine is hat one-half the length of the boty inclusive of the tuberele-likeodontoid process. The remaningportion of theervical is emvedmore or lessantero posteriorly. This is less marked in the pteropine and phyllostomine genera than in the vespertilionine where the emve is so great as torbing the oreiput almost to the tirst dorsal vertebra. The sacrum, at its upper portion, exhibits a compressed projecting ventral surface. The spimous processes are flat, distinet, and increase in size from above downward in molossines and Itelapha, but they are low and conthent in many forms as in the pteropines. The first coceygal vertelora in tailed foms is large and resembles these of the satrum. The eandal vertebra below this are eylindroid. They vary ereatly in length, especially at the heamming of the series.

Rilis.-The ribs are that, broal, with wide interoostal spaces (coalesrent in Natelus and Mipposideros for the region of the finst and second ribs). Theotherinterspaces are also well detined in Pteropidat,
 practically obliterated. The rostal eartilages are relatively inelastic amd are disposed to become early ealdifed. Indeed, the entire chest is rigid, and the ribs often beeome anchylsaed to the spine, and in some forms, as in old individnals of Vespertilio murinus, the contiguons ribs to each other. Hence the respiratory moverments are for the most part performed by the diaphragm and the flank museles.

Ntormem. -The stermum possesses a massive, broad prosternm and a natrowed mesostermum and metasternum. The prostemmm sends a conspienous process forwarl into the nerk (as in many terrestrial mammals) in molossimes: all the others are withont this process. The first joint is msually eomspocmomsly keeded, and in l'teropidar this ked is divided by a derp noteh. The mesostermm in the same family is also keeled its entire lengeth, hat in the other groups it is barely ridged or smooth.

Anterior limbs.-The clacicle is present in all bats. It is tirmly attached at both the atomial and the sternal end. 'The last mamed
effects an important articulation with the cartiage of the first rib and in the sterno-clavienlo-costal joint ; in Molossi, at least, it is of enormons strength. The scopulu, as in other claviculate forms, with few exceptions, in which the large anterion extremity is mot supported on the gromed, possesses an infraspinatus fossal very much larger than the supraspinatus. The bone lies well up on the side of the. nerk in the forms in which the cervical series of vertebrae is hent forward. Exeel lent charactersare yielded by the coracoid process. It is always longand slender, simple, and gently curved in various ars in Pteropida, Rhinolophid:e, Emballonurida, and Phyllostomidar, but bifid in most Vespertilionide. It is interesting to find the genus Vespertilio aberrant in this respect, the process being simple and curved quite as in the larger groups first named. The posterior tubercle is prolonged to form an oblique posteriorly-directed process in the molossines and in Chalinolobus.
With the exception of the tuberosities of the humerus no check processes exist anywhere in the bones of the limbs, this presenting marked contrasts with the limbs of birls. The trochlear end of the humerus yields in the shape and direction of the epitrochlea valuable characters. This process conforms to the terrestrial type, i. c., it is transversely inclined in pteropines and the gemus Saccopteryx; is deflected downward parallel or nearly so to the shaft in phyllostomines, but is absent in vespertilionines. In vespertilonines again the articnlar surface is axial, i. c., is in the middle line of the humerus, but in phyllostomines it is thrown well off to the outer side. Narrow-winged forms, as the molossines and the genus Atalapha, exhibit large tubereles on the humerns and wide trochlear surfaces. Thus these characters harmonize with rapid flight. On the other hand, the forms with smaller tubereles and narrow poorly defined trochlear surfaces have broad wings and presmably slow flight.

The radius constitntes the main support of the forearm and presents few variations from a single type. As a rule it is nearly straight, but is much bent in Hipposideros. It is always obliquely grooved by the tendon of the extensor ossi metacarpi pollicis. The size of the large deep fossa for the insertion of the bieeps flexor is variable. Since the ulna does not enter into the composition of the anterior are of the trochlea, and its place is here taken by the radins in addition to the work this bone does in articulating with the humerns at its onter half, it is easily scen that the radius is provided with two facets at its proximal end, and that the main ridge on the distal artienlar surface of the lumerus fits in between these two radial facets. So far as the degree of invasion of the radins into the trochlea has been noted it appears to correlate with the degree of activity of the prone form in semrrying: It is thus marked in Cheiromeles and Molossus, and is small in Kerivoula.

Proc. N. M. 93-?

The ulat is more incomstant in form than the radins; in all it is incomplete and is composed of a proximal and a distal rudiment. The proximal rudiment is free at the wak olecramon, which resembles the parts in the sloth, and is contimums in most genera with an arehed reol-like shat of miform width, which is ossitied. as a rulde, with theradins at about it proximal thind. Exceptions are moted to this anrangement in some of the vespertilionine genera, c. !., Nootophilus and Miniopterus, as well as in the molossine Promops, in which a small anchylosed olecramom mites ly a tiliform shat to the proximal thited of the Hua. Bat the vespertilionine forms as a mone (Hurpiocephalus mot examined) retain a fire olecramon which is contimons with a filiform tat preving shat, which ends fiee in the museles of the forearm. Corymo rhinns, Ayptophilus, Chalinolobus are exerpions evels to this arrangement, for here the shaft is contirely absent, the mamental fixed olerat non constituting the entire proximal end. The temdon of the triceps musele as it is inserted into the ulara is oeempied by a sesamoid home. No other animals pmssers a bone in this sitmation. It is either a separate ossicle developed in the tendon, or the disjumed epplipsis of the mhat. This relatively mimportant bone receives the musele which abome extends the powerful foream. The extensor carpi uluar is-a musele as constant in this gromp as in othem-anises firm it. All the relations of the ulna, therefore, are with the extensors. The distal end is amelleged to the radins at the wrist. The tom may be that of a quadrate phate which is usmally entire, thongh it may retain a mimute foranen of insulticiency, as a rule, in the respertilionines. The pate may be alosent when a look-hike process directed proximally, as in molossines and Ateluph; it may project nearly at right amgles to shaft. and be conoidal, as in phylostomines, rhinolophines, and the genera Neceopteryx and Netelus; on it may be absent, as in the pteropines.

The earpus of bats exhibits some valualbe characters. In all forms the first row of bomes is composed of two bones ouly-vi\% a large hone which constitutes the greater pat of the row and will here receise the name of the seapho lumar, and a suall separate bone at the nlua Dorder of the seapho-lumar which apmears to be the smeiform.
The secome row is composed of the trapezimm, trapezoid, os magnum, muciform, and pisitorm. The os magnom and meiform always mite to form a comvex surtace for articulation with the second mow. With the exeption of the pisaform all these integers are easily recognized. The earpus on the whole is simple, since the first, serond, and thind metacapal bomes are in axial artienation with traperinm, traperoid, and os magmum, respectively, while the fourth and fifth metacirpal bones artienlate with the muciform.
lupteropines the traperium and os magnm are greatly larger than are the other bomes of the second row, and give a peenlarly massive apparance to the rapins when the wing is folded. The bone first named is without modosity on the palmar aspect. Wedged between
the two bones last named is the insignificant mapezoid. Owing to the alimptly curved line firmod by the heads of the metacarpals the second and fifth bones lie at the level of the plane, which would mite the ends of the curve, while the third and fourth form the bottom. The cavity defined by the enrve as indicated is almost entirely ocerpied by a large hatchet-shape prolongation of the os magnum. Thus the os magnum, beside its axial attachmentr, is held on the one side to the second and on the other to the fith metacarpal bone. The lieads of these bones are so disposed as not tio approach earh other. The pisiform is absent umless it is represented in the palmar prolongation of the os magnum.

In rhinolophines the plan is that of piteropines. Thongh the bones are less massive than in that group, the methods of articmlation are the same, and the pisiform is also apparently absent.

In Artibeus the palman part of the os magmun articulates with a separate but much smaller element, which ocempies the place of the latchet-shape plate in Ptoropus. The heads of the metacarpals are srarely curved, and those of the second and fith are disposed not to approach each other.

Among the vespertilionines we notice the following: Corymorhinus elosely resembles Artibeus. [n Adelonycteris the traperiun possesses a tubercle on the pahmar aspect; the os magnum is withont palmar plate either mited or separate. The heads of the second and fifth metacarpals approach each other and almost tomeh. In Ataluphe the tubercle to the trapezinm is retained, while the palmar extension of the os magnum is absent. Articmating on the pollical side of the fifth metacarpal bone is a separate ossicle, which appears to take the place of the part last named. It is elongated and much larger than any of the carpal clements. I have named it the pisiform. Antrozous is much the same as Atalaphat the ossicle by the side of the fifth metacarpal bone is triangular in shape. The plate of bone which is contimmons with the os magnum on its pahar aspect in pteropines appears to be the same as the separate osside in the same situation in Artibeus.

The bone which articulates by its base with the fifth metacarpal bone in Atalaphe and Autrozous would appear to be identical with the above plate, since when it is present the os magnum ends in a simple manner toward the palm. It would appear to be the pisiform, since in Atelaphe it was observed to receive the tendon of the extensmr carpi ulnaris.
sesamoid bones.-The sesamod bones are fomed in locations where great motion is permitted on the side opposite to which the bones are lodged-the purpose being apparently to prevent stretching of the museles which carry the sesamoids. At the point at which stretching would begin the bones lock with the joint surface and takes the strain. They are best developed on the dorsmon of the carpms in phytlostomines.

The tendency above noted for the second and fifth metacarpal bones to incline toward one another on the palmar aspect of the carpus, aud
as a result for the seeomb bone to lie in front of the third and for the fifth to lie in fient of the fombth, is a motale reatme in the mams wf. the bat. Minor differences are sem in the relative lengths of the bones. They are shortest in peropines and rhimolophines. The secomb meta(appal is usually slightly shorter than the others, but in I Ipposideros it is much shorter. The fith motacarpal bome is apt to be the largest, as in P'eropms, bant in Mipposideros and in the molossines it is the shortest. In the gromplast named amel the related gemms Atalaphe the bones are matked by erooves for the powerinl metacarpo-phalangeal thexors. The thid metacarpal bone is eommonly the largest, the fifth the shortest, the fonth being intermediate, yet in North Ameriean speries of Vespertilio the fomth bone, being slightly shorter than the fifth, is sometimes an individnal variation. Meyadermen is remarkahle for having the above order reversed-the fifth metararal is the largent and the third is the shortest. Viewed as a whole the mamms, notwithstanding its emomons longitudinal development in the third, fourth, and fitth elements, is singularly mimportant in the first and serond. The serond, however, while msupported by elongated phalanges, has strong architectural fimetions at the line of its muion with the carpus.

The phalanges present few points of contrast. They are miformly elongated rods. As a rule the seeond digit possesses a single rudimentary phatan which may he fiee or semianchylised to the metacarpus. The highest degreaf devolopment is attained in the poteropines amb in the gems Rhimomma, the former having thee and the latter two phalanges. In the pteropines the third is ordinarily furnished with a claw. They vary gratly in the range ef motion, those of the secomr and filth digits leing the least mobile; in their relative lengths in the pteropines and the general Yoctilo amd Mimiopterus, these forms being remarkable for the degrees present of lateral and dorsal flexion. It has been noted on p. - that the disposition and relative sizes of the phalanges vary in the semrying and pendant forms. In the position of thisht the row of first phatanges is thexed downward, but the row of second platanges is at the same time deftereded laterally; i. e. toward the body. In the position of rest the parts either remain axially disposed or the row of the first phalanges is laterally or dorsally thexed, as in the molossines and emballanomines. The temmat eartilages are apparentlyabsent in pteropines and rhinolophines. When present they remain in axial line with the phalanges, as in phyllostomines (excepting V'amplrus), or they are deflected from that line, as in vespertilionines and molossines. These little rods appear to be indiaes of the amomet amd direction of stain to which the membranes are subjected, and point, therefore, to distimetoms in methods of tight. It may be saibl that they are absent, or, if pesent, axially disposed in the broad-winged forms, lut are deflected in the narrow winged. In vespertilionines and
 yided with an accossory cartilage, which lies to the ontel side of the
terminal cartilage. It slightly projerts from the margin of the wing membrane.
The much greater length of the third digit, as compared with that of other digits, is a noteworthy feature of the bat wing. Its relative length in different forms serves as a guide to generie and sometimes to specifie distinctions.

The peculiarities of the thmb are so marked that they can be best considered apart from the other manal parts. The thmonb, as a rule, is free from membrane beyond the hasal third of the first phalmax, but may be almost entirely inclosed, as in Thyroptera. The extent of the enwrapping membrane determines the size of the little fold of skin which lies between the thumb and the second metacarpal bone. The thumb is relatively large in pendent forms, since it is here of value in prehension; per contra, in Thyroptera, in which genns a suctorial disk takes the place of a prehensile thmmb, this digit is also small, though the animal is madapted to activity in the prome attitude. It has been already noted (1. 5) that the thumb is bent downward and the under surface of the first metacarpal bone fairly well ontlined in the pendent forms. It is not known how Desmodus and Diphylla, which process with large projecting thumbs, support the body when at rest. The claws on the feet are weak, and the animals are probably not pendent at rest. With these exceptions, the phyllostomines possess the semiflexed thumb, as do all the other families excepting the molossines aud vespertiliones.

Posterior limbs.-The imnominate bone always exhibits a narrow rorllike ilimm which occasionally projects slightly above the line of the iliosacral artienlation, but as a rule is level therewith. The dorsum of the ilinm is flat, in most forms, but it may be concave and broad, as in molossiues, Ataluphu and Chilomycteris. The pubis is, as a rule, defined in the males, but is absent and has a wide interval defined between the innominate bones anteriorly in the females. The slape of the ischinm and of the thyroid foramen is subject to slight variation in genera and even in species. The immominate bone is in most forms distinet from the vertebral column. In molossines, Chilonycteris, and in rhinolophines, it is anchylosed, both at the sacro-iliae junction and the ischiosacral or ischio-coceygeal junctions. Chilonycteris is an instance of the union last named. In all bats a disposition exists for the tuberosity of the ischimm to approach the vertebral column, thus presenting a marked contrast to that seen in terrestrial quadrupeds. Antrozous exlibits a facet between the tuberosity and the first joint of the coceyx. The sloth is the only animal I can recall which exhibits a fixation of the ischinm similar to that found in the bats. The ilio-pectineal spine is marked; often a large tuberele, it may le a needle-like spine. In Hipposideros it is of enormous length and is anchylosed to the ilimen near its upper border.

The interest which attaches to the osteology of the hind extremity has led me to sive in more detail the following:
lof pteropines the ilimu is curved ontwand to a slight degree at the frest. The ridge from the mper border of the acetabmbum is inconspirnous and does not extend entire length of ilimm thas the ventral and dorsal surfares are not separated and there is no special external border near the crest. The tuherosity of the isehimm is deflected markedly fiom the line of the ilium and lies against the coceyx. The pubis is thickened inferiorly; the pectincal spine is absent or scarcely diseernible.

In Hipposideros among the rhinolophines the ilimu is expanded and is concare on both dorsal and ventral surfaces. The broat erest extends ontward and unites by a brod thin flange to the tip of the long pectineal spine. Tuberosity of the ischimm not projected barkward; nearly the entire pubis and ischimm converted into a broad plate of bone at the expense of the thyroid formmen. Symphysis pubis long, entire. The trochanters of the femur are drawn barkward and approximated ; the inner trochanter is the longer; the outer side of the shaft below the head fumished with a flange. The condyles small and separated by a wide notch. In the tibia the spine for hamstrings compressed. Internal tuberosity prolonged; no mallelus.

In phyllostomines the ilime is noto deflected at crest. As seen in Arfibeus the ridge above the acetabulnu rudimental as in pteropinesthe ventral and dorsal surfaces therefore searcely distinguished. The external border below the arest is rugose and enormonsly thickened. The ischium is tumed but slightly toward the coceyx. The inferior border of the pubis produced inward as a long bhme process and the upper border forms a long acicular process (peetineal eminence) which extends one-half the length of the ilinm. The trochanters of the femme not carred back, the outer not separated from the head by a noteh. The imere is much longer than the outer. The shat at its inner side at the proximal fifths exhibits a conspiruons erest. The condyles are of equal size. Ahove them posterionly is a depression (best marked over inner condyle) to receive in forced thexion the posterior border of the articular surface of the tihas. Interemdylar motelo, pit-like. Proximal end of the tibia with scaredy any inward properting process; malleohs noue; tuberde for insertion of hamstrings materdy developed; surfate for artienlation with the tibula mgose.

In Hemidremu the imominate is murh as in Artibeus, but the pmbis not projeeting or thiekened; the peetineal spine but one-third the length of the ilium. The femmer quite as in this gemme, but the outer trochanter separated by a notel from the head. In Macrotus the innominate bone much the same as ahove, but the pectineal sine over one-half the length of the ilinm. The trochanters of the femur approximated and carried well to the back of the shatt. The fibula only half the length of the tibia.

In Ahormops the ilinm is greatly compressed between the ventral and dorsal surfaces; finst joint of the tail very long. The femmr and tibia as in Mucrotus. Chilonycteris in like manner exhibits a compressell iliun ossified to sactum with broad lugose external border adjoining. crest. Dorsal surface slightly concave and expanded. In both Mormops and Chilonycteris the tuberosity of the ischinm is anchylosed to the sacrum. The pubis in the male of Mormops is bony and entire: in Chilonycteris it is less firmly defined. The pertineal spine in Mormops. is two-thirds the length of the ilimm. In Chilonycteris daryi it is remarkable for beiug nearly as long as this bone and bound by fibrous tissue to the vertebre. In both of the genera of Lobostomide the trochanters of the femur are approximate, couthent, and carried well back of the head. Tibia and fibula much as in Mucrotus.

In Molossus the innominate bone is compressed, expanded. It is concave dorsally with narrow iliac upper border slightly projecting. Pectineal spine one-third the height of the ilimm. Pubie symphysis entire, bony. Tuberosity of the ischimm projects well backward, hat is free from the sacrmm. The imer trochanter mach larger than the onter; truncate with a lownward projecting projecting spine, not carried backward. The outer trochanter separated from the head by a slight motch. Condyles equal in size; notch wide, shallow. Tibia straight with large malleolus.

In Promoss the pelvis entire as in Molossus; characters much the same as in this genns, but the upper border of the ilinn withont spine and the tuberosity articnlating with the sacrum, but not anchylosed thereto. Femur and tibia of the same character-the distal epiphysis of the femur narrower than the expanded shaft. In Nyctinomus the ilinm as in Molossus, but the pubic bones free; femmr and tibia the same.

In Ataluphu the ilimm is quite as in Molossus, but is not anchylosed to the sacrum. The pectineal spine blunt, ru dimental; tuberosity of the ischimn lies in the same line with ilium approaches sacrom, but is not artienlated therewith. Both trochanters of the femm are carried backward as in Vampyri, but are notapproximate; i. e., they are visibld from in front; the immer is the narrower, thongh they are of the same length. Condyles high and narrow, the inner swarcely the wider; notch narrow, deep. Tibia curved with medianly projecting inner tuberosity, malleolns scarcely discernible. Fibula entire; upper portion membranons. In Antrozous the ilinm is anchylosed to the sacrum and in the male at least the symplysis pubis is well defined; the tuberosity of the ischinm extends back of the line of the ilinm and almost touches the sacrum. The pubic bone withont a thickened iaferior border. The femmer and tibia much as in V^{\top} espertilio.

In Vespertilio the ilimu is marrow, not expanded above and not concave posteriorly; the outer border scarcely thickened near the crest. The pectineal spine low, compressed, directed slightly forward, blunt,
swaredy higher than the aretablom. The inferion horder of the pubie home greatly thickemed near the symphysic line in the male. The inmominate beme is lighty held to the sacem and at the symplysis pmbis. The inmer troe hanter of the femmer equals the external. Both are small and the gluteal erest is seareely larger than a flame which mites the imer trochanter to the shatt, thes making the femmer unique. The inner comble is slighty the lareer and the moteh narrow. The thina with large projecting median spine at the proximal emb; matleoms distinet.

In Adelonycteris and Lasionycteris the parts quite as in V^{\prime} espertilio, the pertineal spine slighty longer: the shatt of the femme just below the head less expanded.
('orynorhinus much as in Vespertilio, but the upper part of the femme much less expanded, the shaft near the trochanter searely at all.
The femur is without neck. The outer and imer trochantoms are subequal, and of large size, the outer tending to berome the larger as in the molossines. The onter side of the shat below the trond hanter is often marked he a tlange in position of the third trochanter. Hipposideros and all phyllostomines show an inclination to the development of a conspicmons thange on the inner side of the shatt near the imer trochanter. This is most marked in Chilonycteris, Mormops, and Nutalus. In the genera last named the trochanters are drawn backward, lie on the posterior surface of the bone, and are in close relation (resembling, with the heal, the anterior end of a geometric larva), while as a rule they are on lines which answer to the lateral ligaments of the knee joint. The condyles are appoximate markedly unequal with a namow intereondyar motelt, the inmer condyle being the larger, as is the rule, or wide apart with small condyles, as in molossines and rhinolophines. The tibia may be shorter than the femme as in Artibeus and Molossus, but it is, as a rule, longer than that bone. The inner tuberosity is finnished with a horizontally-prejecting process in vespertilionines: this is an exellent character defining the family. The trberele for insertion of the lamstrings is most marked in strictly arbereal forms, as the pteropines. The malleolus is often rudimentary or absent, as in phyllostomines and rhinolophines. The fibula is uniformberempertabe save in the molossines, where it is complete. or in Antrosons, where a membranos tille continnes the form ot the bone to the inner tuberosity of the tilia.

The toes retain two phalanges to the first toc; all the others have three, lout difter in their relative lengthes. The first phalanx of the first foe is, so far as examined, longer than that of the other toes. In I'teropas the lengthe of the foes from the second to the fith gradnally diminish. In Chilomyeteris they abmptly inerease, that of the serond for being one-third shorter than the fifth. In all bats the tarsus and calleancmare elongate and exhibit the general character of these bones. in mamals, in which little or no weight is borne upon the posterior extremities. Both bones are so disposed that the larger end of eath is
directed proximally. In lihmolophus the calcamem enters into the ankle joint. lot other forms the callamem is impendent of the joint. In Phyllostomider, including Tutahes, as well as in the genus Rhychomycteris, the calcar* is phaced in axial line with the calcanenm. In other fanilies it joins the calcanenm to its onter side at a well-definerl angle. As a rule the astragalus and calcanemm are nearly of one size, but in the genus last named the calcanem is notably the smaller (Am. Natu'alist, Feb., 1886, 176).

GENERAL PLAN OF ANTERIOR ENTREMITLES IN FLYING VERTEBRATED ANLMALS.

From the above consideration it will be seen that the wing membranes possess various features which can be used in distinguishing the members of the order. But after what manner are the flying mammals distinguished from other flying vertebrates?
There are two distinct types of modification which the vertebrate skeleton has undergone in adapting the animal for flight, both of which depend upon some peenliarity in the structure of the anterior extremities; and in order to obtain a correet oprinion of them we propose to cast a glance at each in turn.
l'lan of bony structure of the wings of flying vertebrate animals.
a. Bones of carpus umnited distinct; Hight maintained lyy dermal expanse.
I. Wing membrane supported hy all fingers.

Bats (Vespertilio), order of Mammalia.
1I. Wing membrane supported by the fourth tinger only (which is immensely developed), the others remaining free.

I'terodactyles, order of Reptilia.
III. Bones of metacarpus, two to three in number; feathers not radiating.

Living birds (Aves)—class. tlight maintaiued by dermal appendages.
I. The Bat, in which the hmmerns is long and slender, with a small peetoral ridge. Ulua rudimentary. The radins constitutes the loulk of the forearm; carpus composed of six bones; the metacarpal bones, five in number, separate and distinet; the phalanges generally, two in monber; thmmb, and in some genera the index finger, surmounted by a claw.
II. The l'terodactyle, in which the humerus is short and straight, very broad athead, with angular and prominent pectoral ridge; ulna and ratius dis-
a. tinct, of nearly equal size; carpus composed of tive bones; metacarpus of four bones, separate and distinct; first finger with three joints, second with four, third with five, fourth with four joints, all provided with claws. with the exception of the fourth, which is remarkable for the extraordinary development of its several joints. It is from this last-mentioned finger to the base of the foot that the skin was stretched by which the animal was enabled to tly.
*The ealear is an element of doubtful homology. It smpports the free border of the interfemoral membrane, and is of the same significance as the aceessory cartilage of the fifth manal digit.

111．Tho Biad，in which the hamerns is chrved，more or less slemder；peetoral ridge prominent，not angular；ulna large，empod，not unted with the slomer ：amb modimimutive radins；carpus or two hones；metacarpus of
 wher two of lager dimensions and mited su as to forma bame resembling thesc of the torearm：＂har phatans of ome joint，mited th the matial， whicla is composed of two．

 dimes in the number of metararpal homes，which ate here fome inmmber： the tirst and seeond are shember，fiee and separate from one atother：the Hhed and liont thear emsiderahle resemblane for hose of extant bidels，in beinglarge，stom，and elosely ：tpproximated；but are not，however，miteal．

Flight is supposed to have been mantatined in the same mamer as in livine hims．
In addition to the instances already given，ereptan tishes，as the
 The merhanism that litts the borly of the dish from the water，and up－ holds it for a shoert time in the air，is obtamed in the peremall tims， Which，in these animals，are enomomsly developed．＇The strmoture of these tims is homologens to that of the anterion extremities of other vertebatas－their fom alone being moditied to adapt the animal to the medime in which it is plade Thus we have，in eatel swat suldi－ vision of vertebrate animals，a representative capable of sustaining tlisht．

Another somewhat similar moditioation of the anmal ecomomy is met with in af fow animals of ahoreal habits．Here a peenliar arrange ment of the skin is ohserved，which embles the possesser tor heak the

 the furred skin extends laterally trom the sides of the body，and is attached to anteriom aml pestorion extmoties at the motarapal and metatabsal rewions resperticely．The mall instamer of osteologiabl development is ubtained in the Diasom（Draco roldus），a small lizard troms sumatra，in which lomge tramserse processes tiom either side of the lumbar vortebore support a thin membramons growth which is rapable of being opened and shat by means ot mustles attarhed to the bonge trame－work。

Thictu．

In deseribinge the teeth the momemelatme of Prot．H．F．Oshorn will be followed．The diavian herewith presented is cophed fom this

リリリビに Mい1．．．にな。

,	Protoconid. prd
Postero-external cusp	Hypoconid. hyd
Antero-internal eusp or fifth (usp	1'aracouid. 13 ${ }^{\text {d }}$
Intermediate orantero-internal cor	Metaconid, me
Postero-intermal ensp	Entoconid. end

The upper molar in most bats presents to an extraordinary degree depressions on the onter or buceal surface of the erown. Surh depressions receive the name of "flutings" and are seen in the teeth of many mammals other tian the bats, as for example in the moles and shrews among the lnsectivora, in the Ungrlata, and in a marked degree in :m extinct genms described by Prof. Cope, Lambrlotherium. "Fhatings," while of no homological significance, fumish systematie characters, and will therefore be moted in the descriptions. Disposed so as to define two Y-shaped figures the "flutings" extend as a simate rommissure between the paracone and the metacone. Of the two V s an anterior and a posterior will be distinguished. Each V has two limbs, a first and a second. In the third molar varions degrees of loss of the system of flutings occur. Commonly the anterior V is retained while the second is lost, exrepting the buccal half of the first limb, as in V finsens, or the "fluting" is reduced to the anterior V, the palatal half of the second limb being lost, as in Macrotus and I tulupha. In the Bats of North America the least reduced last molars are seen in Nyetimomus and V. hesperus.

The tri-tubercular tooth which results from the presence of the three cusps, the protocone, the paracone, and the metacone, may be conrected with a triangular figure by bands which mutes the cusp-points. 'These bands will be named in this monograph the commissures. In the molars of the bat such a triangle is seen whose apex is palatal and constituted of the protocone and whose rommissure extends from this cusp to the paracone and metacone. Its base is the extraordinarily simate ("fluted") buccal surface of the crown. A careful search must be made for the true positions of the sides of this triangular figure for they lie on the opposed sides of the teeth and are inconspicnous. The crown at the "flatings" is of great vertical extent and dwarfs even the proportions of the protocone. When seen in profile the proportions between the size of the "columms" of the two V's and the "cusp" of the protocone afford materials for interesting comparisons in the different genera. The hypocone presents excellent subordinate characters. It is a development of the cingulnm. Usmally flat, as in Macrotus, it may be a sharply defined as in Promops perotis, or provided with a sharp enspas in the exotic gemns Noctilio. The cingulum can be traced as a delicate ridge which lies basal to the sides of the tritubercular triangle. It varies greatly in extent, being best developed in Nyctinomus.

In the lower molar scarcely any fluting is present and the plan of the tooth is simple. The protoconid, paraconid, and melaconid are mited
hy commisures. The apex of the trangular tigure is bucal. The heed or hypocomid is lage. It is mited to the triangle ly a commissure at the lingual side. Surh a commisume is provided with a shand rusp in l '. perotis, but as a rule it is smooth.

REY 'TO (AENERA.

11. Bats withomt median appembages forme.

1. Nostrils cirenlar, wings narow and pointed; tail long. produced tar beyond interfomoral membane; marginal toes fringel with contse hair. Mobossi.
 Lips not growsel. Iromops.
b. Nostrils chliptical, wings hroal, ample; tail as long oronly slighty longer than the broal interfomoral membrane; marginal toes maked \qquad
\qquad
c. Two incisors in upper jaw.
tsix incisors in lower jaw.

* Lntertimotal membrame morn or less hairy.

Premolars	Insiphterus.
Premolats	Italupher.

* * Interfemor:al membrane not hairy . Vycticejus.

('. Fonr incisoms in mpur jaw.
 horder. Lelelon!riterix. \dagger † Premolars $\frac{2}{2}$
* Greatest width of tragns cunals much less than one-half inmer border; nose simple, carn soburate.

Vesperugo.
** Gratest width of thengs equals mathethed height of immer border; anricles mited.
© Nose with lateral elnh-shaped ghand-masses Corymorhinus. fif Nosd without hatecal chblr-shaped glamd-masse's............. Euderued.
 height of inner border L.asiouyctoris.

[^0]: *The monograph from which this introduction has been extracted will be published as a Bolletin of the National Museum. The printing of the latter having been mavoidably delayed, it has been thonght best to pnblish this introduction in advance.-F W 'T

[^1]: *The erenp hamed the Molossi will be held in this essaty to be distinet from the gronp of which Emballonura is the contral genus. I am of the opinion that these alliancers aro distime and co-vpal.

[^2]: *The endopatagimm and mesopataginm are together the same as plagiopatagium of Kolenati. (Beitr. z. Naturgesch. der Europ. Chir., Dresden, 1857.)

[^3]: * A word was needed to express the terrestrial motion of a bat whose wings are at rest. I venture to use "scurry" in lien of a better.
 \dagger The contrast between prone and pendant positions of bats when at rest is an instructive one. It supposes the existence of a umber of adaptive claracters, which will be observer in the accounts of members of our fauna. So little is known of the halits of hats that it would he premature to base any generalizations upon these or any other isolated gronps of structural peculiarities. I have seen our common brown bat in captivity hang itself up by the claws, but have never seen it other than prone when at rest in its native hamen. I am also aware that lihyuchouycteris (which has a flexed thumb and a small potlical callosity) comes to rest like a moth; i. e., with wings expanded yet prone.

[^4]: - Vespertilionide (exerpting lleenti) and Molussi.

[^5]: * C. marginatus.

[^6]: Superior loop angulated, open............ . Arthenes.
 Superior loop nearly filled..................Nyctinomus (J. brasiliensis).
 Superior loop ahout half filled.............. Atalapha.

